以表彰他在数学分析方面的工作与其在多项学科上的应用:偏微分方程、数学物理、组合学、数论、遍历理论与理论计算机科学。
数学分析论述极限过程,例如圆圈可以用内接正多边形近似,随边数增加而任意逼近(阿基米德使用的方法),又或动力学中瞬时速度的概念等,牛顿和莱布尼茨的微积分便提供了一个数学分析工具,成功地应用於行星轨道,航空飞行和海啸波浪等问题上。
为这些极限过程确证的多是各种组合数学的不等式。如要精确地立出和证明这些不等式,需要高度的洞察力和心智创造力。分析学的工具和语言是众多数学领域的基础,从概率论、统计物理以至偏微分方程、动力系统、组合数学和数论。
Mathematical analysis is concerned with the study of infinite processes, and the differential calculus of Newton and Leibniz lies at its heart. It provided the foundation and the language for Newtonian mechanics and the whole of mathematical physics. Over the past three centuries it has permeated much of mathematics and science.
Associated with the limiting process there are many technically difficult “estimates” or inequalities, of a combinatorial or algebraic nature, which prepare the ground and justify passing to the limit. Such estimates are often extremely hard since they address some subtle and important aspect of the problem at hand. Establishing this becomes a key step, opening the door to a wide variety of applications.